On Extension of Twisted Canonical forms

(joint with J. Cao)

Kraków Seminar May 10, 2021

Mihai PAUN Universität Bayreuth, Germany

1. Introduction

2. A few results and a conjecture

3. Proof of the main result

We will use the following notations:

• $p: \mathcal{X} \to \mathcal{D}$ proper, smooth family such that $\mathcal{X}_t = p^{-1}(t)$ is Kähler.

We will use the following notations:

- $p: \mathcal{X} \to \mathcal{D}$ proper, smooth family such that $\mathcal{X}_t = p^{-1}(t)$ is Kähler.
- $K_{\mathcal{X}}$ is the canonical bundle of \mathcal{X}

We will use the following notations:

- $p: \mathcal{X} \to \mathcal{D}$ proper, smooth family such that $\mathcal{X}_t = p^{-1}(t)$ is Kähler.
- $K_{\mathcal{X}}$ is the canonical bundle of \mathcal{X}
- $\bullet \ \mathcal{L} \to \mathcal{X}$ is a holomorphic line bundle

We will use the following notations:

- $p: \mathcal{X} \to \mathcal{D}$ proper, smooth family such that $\mathcal{X}_t = p^{-1}(t)$ is Kähler.
- $K_{\mathcal{X}}$ is the canonical bundle of \mathcal{X}
- $\bullet \ \mathcal{L} \to \mathcal{X}$ is a holomorphic line bundle
- For each $k \ge 0$ consider $\mathcal{F}_k := (K_{\mathcal{X}} + \mathcal{L}) \otimes \mathcal{O}_{\mathcal{X}}/t^{k+1} \mathcal{O}_{\mathcal{X}}$

We will use the following notations:

- $p: \mathcal{X} \to \mathcal{D}$ proper, smooth family such that $\mathcal{X}_t = p^{-1}(t)$ is Kähler.
- $K_{\mathcal{X}}$ is the canonical bundle of \mathcal{X}
- $\bullet \ \mathcal{L} \to \mathcal{X}$ is a holomorphic line bundle
- For each $k \ge 0$ consider $\mathcal{F}_k := (K_{\mathcal{X}} + \mathcal{L}) \otimes \mathcal{O}_{\mathcal{X}}/t^{k+1} \mathcal{O}_{\mathcal{X}}$
- We have a projection map $\pi_k : \mathcal{F}_{k+1} \to \mathcal{F}_k$

Question

Let $s \in H^0(\mathcal{X}, \mathcal{F}_k)$. When does s belongs to the image of π_k ?

Theorem [CP]

Let s be a section of \mathcal{F}_k , where $\mathcal{L} := (m-1)K_{\mathcal{X}}$ and $m \ge 1$.

Theorem [CP]

Let s be a section of \mathcal{F}_k , where $\mathcal{L} := (m-1)K_{\mathcal{X}}$ and $m \ge 1$.

• let
$$L := \mathcal{L}|_X$$
 and $\varphi_L := \frac{m-1}{m} \log |f_s|^2$ so that $h_L = e^{-\varphi_L}$.

The main result

We have the following statement.

Theorem [CP]

Let s be a section of \mathcal{F}_k , where $\mathcal{L} := (m-1)K_{\mathcal{X}}$ and $m \ge 1$.

▶ let
$$L := \mathcal{L}|_X$$
 and $\varphi_L := \frac{m-1}{m} \log |f_s|^2$ so that $h_L = e^{-\varphi_L}$.

► s admits a C^{∞} extension s_k to \mathcal{X} , such that $\overline{\partial} s_k = t^{k+1} \Lambda_k$ together with

(*)
$$\int_X \left| \frac{\Lambda_k}{dt} \right|^2 e^{-(1-\varepsilon)\varphi_L} dV < \infty, \qquad \forall \varepsilon > 0.$$

The main result

We have the following statement.

Theorem [CP]

Let s be a section of \mathcal{F}_k , where $\mathcal{L} := (m-1)K_{\mathcal{X}}$ and $m \ge 1$.

▶ let
$$L := \mathcal{L}|_X$$
 and $\varphi_L := \frac{m-1}{m} \log |f_s|^2$ so that $h_L = e^{-\varphi_L}$.

▶ s admits a C^{∞} extension s_k to \mathcal{X} , such that $\overline{\partial}s_k = t^{k+1}\Lambda_k$ together with

(*)
$$\int_X \left| \frac{\Lambda_k}{dt} \right|^2 e^{-(1-\varepsilon)\varphi_L} dV < \infty, \quad \forall \varepsilon > 0.$$

Then $s = \pi_k(\widehat{s})$.

Theorem [CP]

Let s be a section of \mathcal{F}_k , where $\mathcal{L} := (m-1)K_{\mathcal{X}}$ and $m \ge 1$.

let
$$L := \mathcal{L}|_X$$
 and $\varphi_L := \frac{m-1}{m} \log |f_s|^2$ so that $h_L = e^{-\varphi_L}$.

► s admits a C^{∞} extension s_k to \mathcal{X} , such that $\overline{\partial} s_k = t^{k+1} \Lambda_k$ together with

$$(\star) \qquad \qquad \int_X \left|\frac{\Lambda_k}{dt}\right|^2 e^{-(1-\varepsilon)\varphi_L} dV < \infty, \qquad \forall \varepsilon > 0.$$

Then $s = \pi_k(\widehat{s})$.

• For a more general result –involving an *abstract* \mathcal{L} - we refer to arXiv:2012.05063.

Theorem ([OT87], ...)

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(X, K_X + L)$ such that

Theorem ([OT87], ...)

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(X, K_X + L)$ such that

$$\Theta(\mathcal{L}, h_{\mathcal{L}}) \ge 0, \qquad \int_X |u|^2 e^{-\varphi_L} < \infty.$$

Theorem ([OT87], ...)

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(X, K_X + L)$ such that

$$\Theta(\mathcal{L}, h_{\mathcal{L}}) \ge 0, \qquad \int_X |u|^2 e^{-\varphi_L} < \infty.$$

Then u extends to \mathcal{X} (together with L^2 estimates for the extension).

Theorem ([OT87], ...)

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(X, K_X + L)$ such that

$$\Theta(\mathcal{L}, h_{\mathcal{L}}) \ge 0, \qquad \int_X |u|^2 e^{-\varphi_L} < \infty.$$

Then u extends to \mathcal{X} (together with L^2 estimates for the extension).

Theorem ([CDM16])

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(\mathcal{X}, \mathcal{F}_k)$ such that:

Theorem ([OT87], ...)

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(X, K_X + L)$ such that

$$\Theta(\mathcal{L}, h_{\mathcal{L}}) \ge 0, \qquad \int_X |u|^2 e^{-\varphi_L} < \infty.$$

Then u extends to \mathcal{X} (together with L^2 estimates for the extension).

Theorem ([CDM16])

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(\mathcal{X}, \mathcal{F}_k)$ such that: We have $\Theta(\mathcal{L}, h_{\mathcal{L}}) > 0$ on \mathcal{X}

• We have $\Theta(\mathcal{L}, h_{\mathcal{L}}) \geq 0$ on \mathcal{X} .

Theorem ([OT87], ...)

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(X, K_X + L)$ such that

$$\Theta(\mathcal{L}, h_{\mathcal{L}}) \ge 0, \qquad \int_X |u|^2 e^{-\varphi_L} < \infty.$$

Then u extends to \mathcal{X} (together with L^2 estimates for the extension).

Theorem ([CDM16])

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(\mathcal{X}, \mathcal{F}_k)$ such that:

• We have $\Theta(\mathcal{L}, h_{\mathcal{L}}) \geq 0$ on \mathcal{X} .

• u admits a \mathcal{C}^{∞} extension u_k to \mathcal{X} such that $\overline{\partial} u_k = t^{k+1} \Lambda_k$ together with

$$\int_{\mathcal{X}} \left| \Lambda_k \right|^2 e^{-\varphi_L} dV < \infty$$

Theorem ([OT87], ...)

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(X, K_X + L)$ such that

$$\Theta(\mathcal{L}, h_{\mathcal{L}}) \ge 0, \qquad \int_X |u|^2 e^{-\varphi_L} < \infty.$$

Then u extends to \mathcal{X} (together with L^2 estimates for the extension).

Theorem ([CDM16])

Consider $p: \mathcal{X} \to \Delta$ a Kähler family, $(\mathcal{L}, h_{\mathcal{L}})$ on \mathcal{X} and $u \in H^0(\mathcal{X}, \mathcal{F}_k)$ such that:

• We have $\Theta(\mathcal{L}, h_{\mathcal{L}}) \geq 0$ on \mathcal{X} .

• u admits a \mathcal{C}^{∞} extension u_k to \mathcal{X} such that $\overline{\partial} u_k = t^{k+1} \Lambda_k$ together with

$$\int_{\mathcal{X}} \left| \Lambda_k \right|^2 e^{-\varphi_L} dV < \infty$$

Then u extends to \mathcal{X} (no estimates available).

The following important problem is open.

The following important problem is open.

Conjecture [Siu]

Consider a Kähler family $p: \mathcal{X} \to \Delta$ and let $s \in H^0(X, mK_X)$ be a pluricanonical section. Then s extends to \mathcal{X} .

The following important problem is open.

Conjecture [Siu]

Consider a Kähler family $p: \mathcal{X} \to \Delta$ and let $s \in H^0(X, mK_X)$ be a pluricanonical section. Then s extends to \mathcal{X} .

A few remarks:

▶ Solved by Y.-T. Siu ('02) for *projective* families.

The following important problem is open.

Conjecture [Siu]

Consider a Kähler family $p: \mathcal{X} \to \Delta$ and let $s \in H^0(X, mK_X)$ be a pluricanonical section. Then s extends to \mathcal{X} .

A few remarks:

- Solved by Y.-T. Siu ('02) for *projective* families.
- ▶ For Kähler families, only very particular cases known M. Levine ('83).

The following important problem is open.

Conjecture [Siu]

Consider a Kähler family $p: \mathcal{X} \to \Delta$ and let $s \in H^0(X, mK_X)$ be a pluricanonical section. Then s extends to \mathcal{X} .

A few remarks:

- Solved by Y.-T. Siu ('02) for *projective* families.
- ▶ For Kähler families, only very particular cases known M. Levine ('83).
- We discuss next the proof of Theorem [CP].

• We have
$$\overline{\partial}s_k = t^{k+1}\Lambda_k$$
; let $\lambda_k := \frac{\Lambda_k}{dt}\Big|_X$

• We have
$$\overline{\partial} s_k = t^{k+1} \Lambda_k$$
; let $\lambda_k := \frac{\Lambda_k}{dt} \Big|_X$

▶ It follows that $\overline{\partial}\lambda_k = 0$

• We have
$$\overline{\partial}s_k = t^{k+1}\Lambda_k$$
; let $\lambda_k := \frac{\Lambda_k}{dt}\Big|_X$

- It follows that $\overline{\partial}\lambda_k = 0$
- ▶ Have to show that

$$\lambda_k = \overline{\partial} v_k$$

for some $L = (m-1)K_X$ -valued form v_k .

• We have
$$\overline{\partial}s_k = t^{k+1}\Lambda_k$$
; let $\lambda_k := \frac{\Lambda_k}{dt}\Big|_X$

- It follows that $\overline{\partial}\lambda_k = 0$
- ▶ Have to show that

$$\lambda_k = \overline{\partial} v_k$$

for some $L = (m-1)K_X$ -valued form v_k .

• The first step is to show the following.

• We have
$$\overline{\partial} s_k = t^{k+1} \Lambda_k$$
; let $\lambda_k := \frac{\Lambda_k}{dt} \Big|_X$

- It follows that $\overline{\partial}\lambda_k = 0$
- Have to show that

$$\lambda_k = \overline{\partial} v_k$$

for some $L = (m-1)K_X$ -valued form v_k .

• The first step is to show the following.

Claim

There exist α and β forms of type (n,0) and (n-1,1) with values in L respectively, such that their coefficients are $\frac{C^{\infty}}{s^N}$ and $\lambda_k = \overline{\partial} \alpha + D'\beta$

on $X \setminus (s = 0)$.

Proof of the Claim

• We use the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$ and take the derivative with respect to t.

Proof of the Claim

- We use the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$ and take the derivative with respect to t.
- Intrinsic objects needed:

Proof of the Claim

- We use the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$ and take the derivative with respect to t.
- Intrinsic objects needed:
 - The section s_k induces an operator

$$D': \mathcal{C}^\infty_{p,q}(\mathcal{X},\mathcal{L}) \to \mathcal{C}^\infty_{p+1,q}(\mathcal{X},\mathcal{L})$$
 locally given by $D'|_{\Omega} = \partial - \frac{m-1}{m} \frac{\partial f_k}{f_k} \wedge \cdot$

Proof of the Claim

- We use the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$ and take the derivative with respect to t.
- Intrinsic objects needed:
 - \blacktriangleright The section s_k induces an operator

$$D': \mathcal{C}_{p,q}^{\infty}(\mathcal{X}, \mathcal{L}) \to \mathcal{C}_{p+1,q}^{\infty}(\mathcal{X}, \mathcal{L})$$

locally given by $D'|_{\Omega} = \partial - \frac{m-1}{m} \frac{\partial f_k}{f_k} \wedge \cdot$
 $\Xi \in \mathcal{C}^{\infty}(\mathcal{X}, T_{\mathcal{X}})$ such that $\Xi|_{\Omega} = \frac{\partial}{\partial t} + \sum_i a_i \frac{\partial}{\partial z_i}$

Proof of the Claim

- We use the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$ and take the derivative with respect to t.
- Intrinsic objects needed:
 - The section s_k induces an operator

$$D': \mathcal{C}_{p,q}^{\infty}(\mathcal{X}, \mathcal{L}) \to \mathcal{C}_{p+1,q}^{\infty}(\mathcal{X}, \mathcal{L})$$

locally given by $D'|_{\Omega} = \partial - \frac{m-1}{m} \frac{\partial f_k}{f_k} \wedge \cdot$
 $\Xi \in \mathcal{C}^{\infty}(\mathcal{X}, T_{\mathcal{X}})$ such that $\Xi|_{\Omega} = \frac{\partial}{\partial t} + \sum_i a_i \frac{\partial}{\partial z_i}$

• Let $\operatorname{Lie}_{\Xi} := D'(\Xi \downarrow \cdot)$ so that we have

$$\operatorname{Lie}_{\Xi}: \mathcal{C}^{\infty}_{n+1,q}(\mathcal{X}, \mathcal{L}) \to \mathcal{C}^{\infty}_{n+1,q}(\mathcal{X}, \mathcal{L})$$

Proof of the Claim

• Apply Lie_{Ξ} to the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$:

- Apply Lie_{Ξ} to the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$:
 - On the RHS we get $(k+1)t^k\Lambda_k + \mathcal{O}(t^{k+1})$.

- Apply Lie_{Ξ} to the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$:
 - On the RHS we get $(k+1)t^k\Lambda_k + \mathcal{O}(t^{k+1})$.
 - ▶ On the LHS we have $\overline{\partial}$ Lie_{Ξ} $(s_k) + D'(\overline{\partial}\Xi \rfloor s_k) + curvature.$

- Apply Lie_{Ξ} to the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$:
 - On the RHS we get $(k+1)t^k\Lambda_k + \mathcal{O}(t^{k+1})$.
 - ▶ On the LHS we have $\overline{\partial}$ Lie_{Ξ}(s_k) + $D'(\overline{\partial}\Xi \rfloor s_k$) + curvature.

► Thus:
$$\overline{\partial} \text{Lie}_{\Xi}(s_k) + D'(\overline{\partial}\Xi \rfloor s_k) = \frac{k+1}{m} t^k \Lambda_k + \mathcal{O}(t^{k+1})$$

Proof of the Claim

- Apply Lie_{Ξ} to the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$:
 - On the RHS we get $(k+1)t^k\Lambda_k + \mathcal{O}(t^{k+1})$.
 - ▶ On the LHS we have $\overline{\partial}$ Lie_{Ξ}(s_k) + $D'(\overline{\partial}\Xi \rfloor s_k$) + curvature.

► Thus:
$$\overline{\partial} \text{Lie}_{\Xi}(s_k) + D'(\overline{\partial}\Xi \rfloor s_k) = \frac{k+1}{m} t^k \Lambda_k + \mathcal{O}(t^{k+1})$$

• For the next derivative we remark:

$$\blacktriangleright \ \overline{\partial}\Xi \rfloor s_k = dt \wedge \rho$$

- Apply Lie_{Ξ} to the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$:
 - On the RHS we get $(k+1)t^k\Lambda_k + \mathcal{O}(t^{k+1})$.
 - ▶ On the LHS we have $\overline{\partial}$ Lie_{Ξ}(s_k) + $D'(\overline{\partial}\Xi \rfloor s_k$) + curvature.

► Thus:
$$\overline{\partial} \text{Lie}_{\Xi}(s_k) + D'(\overline{\partial}\Xi \rfloor s_k) = \frac{k+1}{m} t^k \Lambda_k + \mathcal{O}(t^{k+1})$$

- For the next derivative we remark:
 - $\blacktriangleright \ \overline{\partial}\Xi \rfloor s_k = dt \wedge \rho$
 - Lie_{\(\pm\)} Lie_{\(\pm\)} $\left(D'(dt \wedge \rho) \right) = D'(dt \wedge \rho_1).$

Proof of the Claim

- Apply Lie_{Ξ} to the equation $\overline{\partial}s_k = t^{k+1}\Lambda_k$:
 - On the RHS we get $(k+1)t^k\Lambda_k + \mathcal{O}(t^{k+1})$.
 - ▶ On the LHS we have $\overline{\partial}$ Lie_{Ξ}(s_k) + $D'(\overline{\partial}\Xi \rfloor s_k$) + curvature.

► Thus:
$$\overline{\partial} \text{Lie}_{\Xi}(s_k) + D'(\overline{\partial}\Xi \rfloor s_k) = \frac{k+1}{m} t^k \Lambda_k + \mathcal{O}(t^{k+1})$$

• For the next derivative we remark:

$$\overline{\partial}\Xi \rfloor s_k = dt \wedge \rho$$

$$Lie_{\Xi} \left(D'(dt \wedge \rho) \right) = D'(dt \wedge \rho_1).$$

 \bullet Summing up, after k+1 derivatives we get

$$\overline{\partial}\alpha + D'\beta = \lambda_k$$

on $X \setminus (s = 0)$.

A few more reductions

• The previous step: $\overline{\partial}\alpha + D'\beta = \lambda_k$ on $X \setminus (s = 0)$

- The previous step: $\overline{\partial}\alpha + D'\beta = \lambda_k$ on $X \setminus (s = 0)$
- By hypothesis: $\int_X |\lambda_k|^2 \frac{dV}{|s|^{2(1-\varepsilon)\frac{m-1}{m}}} < \infty.$

- The previous step: $\overline{\partial}\alpha + D'\beta = \lambda_k$ on $X \setminus (s = 0)$
- By hypothesis: $\int_X |\lambda_k|^2 \frac{dV}{|s|^{2(1-\varepsilon)\frac{m-1}{m}}} < \infty.$
- Let $\pi: \widehat{X} \to X$ log-resolution $(X, \operatorname{Div}(s))$:

- The previous step: $\overline{\partial}\alpha + D'\beta = \lambda_k$ on $X \setminus (s = 0)$
- By hypothesis: $\int_X |\lambda_k|^2 \frac{dV}{|s|^{2(1-\varepsilon)\frac{m-1}{m}}} < \infty.$
- Let $\pi: \widehat{X} \to X$ log-resolution $(X, \operatorname{Div}(s))$:
 - The support of $\pi^* \text{Div}(s)$ written as E + F where $E = E_1 + \cdots + E_N$ and $F = F_1 + \cdots + F_M$, snc

- The previous step: $\overline{\partial}\alpha + D'\beta = \lambda_k$ on $X \setminus (s = 0)$
- By hypothesis: $\int_X |\lambda_k|^2 \frac{dV}{|s|^{2(1-\varepsilon)\frac{m-1}{m}}} < \infty.$
- Let $\pi: \widehat{X} \to X$ log-resolution $(X, \operatorname{Div}(s))$:
 - The support of $\pi^* \text{Div}(s)$ written as E + F where $E = E_1 + \cdots + E_N$ and $F = F_1 + \cdots + F_M$, snc
 - ► The inverse image λ_k induces a (n, 1) form $\widehat{\lambda}_k$ with values in E + L where $L \equiv \sum \delta_i F_i$ for $\delta_i \in]0, 1[\cap \mathbb{Q}]$.

- The previous step: $\overline{\partial}\alpha + D'\beta = \lambda_k$ on $X \setminus (s = 0)$
- By hypothesis: $\int_X |\lambda_k|^2 \frac{dV}{|s|^{2(1-\varepsilon)\frac{m-1}{m}}} < \infty.$
- Let $\pi: \widehat{X} \to X$ log-resolution $(X, \operatorname{Div}(s))$:
 - The support of $\pi^* \text{Div}(s)$ written as E + F where $E = E_1 + \cdots + E_N$ and $F = F_1 + \cdots + F_M$, snc
 - ► The inverse image λ_k induces a (n, 1) form $\widehat{\lambda}_k$ with values in E + L where $L \equiv \sum \delta_i F_i$ for $\delta_i \in]0, 1[\cap \mathbb{Q}]$.
 - Let h_L be the metric on L given by $\varphi_L := \sum \delta_i \log |f_i|^2$.

- The previous step: $\overline{\partial}\alpha + D'\beta = \lambda_k$ on $X \setminus (s = 0)$
- By hypothesis: $\int_X |\lambda_k|^2 \frac{dV}{|s|^{2(1-\varepsilon)\frac{m-1}{m}}} < \infty.$
- Let $\pi: \widehat{X} \to X$ log-resolution $(X, \operatorname{Div}(s))$:
 - The support of $\pi^* \text{Div}(s)$ written as E + F where $E = E_1 + \cdots + E_N$ and $F = F_1 + \cdots + F_M$, snc
 - ► The inverse image λ_k induces a (n, 1) form $\widehat{\lambda}_k$ with values in E + L where $L \equiv \sum \delta_i F_i$ for $\delta_i \in]0, 1[\cap \mathbb{Q}]$.
 - Let h_L be the metric on L given by $\varphi_L := \sum \delta_i \log |f_i|^2$.
- We have $\overline{\partial}\widehat{\alpha} + D'\widehat{\beta} = \widehat{\lambda}_k$ on $\widehat{X} \setminus (E \cup F)$, forms with values in E + L.

A few more reductions

• Change the notations (\widehat{X} replaced by X, etc).

- Change the notations (\widehat{X} replaced by X, etc).
- We have the following

- Change the notations (\widehat{X} replaced by X, etc).
- We have the following

Claim

There exist α and β forms of type (n,0) and (n-1,1) with values in L and logarithmic poles along E such that

$$\overline{\partial} \alpha + D' \beta = \frac{\lambda_k}{s_E} \qquad \text{on } X \setminus E.$$

- Change the notations (\widehat{X} replaced by X, etc).
- We have the following

Claim

There exist α and β forms of type (n,0) and (n-1,1) with values in L and logarithmic poles along E such that

$$\overline{\partial} \alpha + D' \beta = \frac{\lambda_k}{s_E} \qquad \text{on } X \setminus E.$$

• Assume that $E = E_1$ and F = 0; we argue as follows

- Change the notations (\widehat{X} replaced by X, etc).
- We have the following

Claim

There exist α and β forms of type (n,0) and (n-1,1) with values in L and logarithmic poles along E such that

$$\overline{\partial}\alpha + D'\beta = \frac{\lambda_k}{s_E} \qquad \text{on } X \setminus E.$$

• Assume that $E = E_1$ and F = 0; we argue as follows

• $(\Omega_i, (z_i))_{i \in I}$ finite covering of X, such that $E_1 \cap \Omega_i = (z_i^1 = 0)$.

- Change the notations (\widehat{X} replaced by X, etc).
- We have the following

Claim

There exist α and β forms of type (n,0) and (n-1,1) with values in L and logarithmic poles along E such that

$$\overline{\partial}\alpha + D'\beta = \frac{\lambda_k}{s_E} \qquad \text{on } X \setminus E.$$

• Assume that $E = E_1$ and F = 0; we argue as follows

\$\$\$(Ω_i, (z_i))_{i∈I} finite covering of X, such that E₁ ∩ Ω_i = (z¹_i = 0).
\$\$V₁ := ∑_{i∈I} θ_iz¹_i ∂/∂z¹_i; consider α₁ := α + 1/N D' (V₁ Δ) (here D' is the Chern connection on E + L and N is the pole order of α along E₁.

- Change the notations (\widehat{X} replaced by X, etc).
- We have the following

Claim

There exist α and β forms of type (n,0) and (n-1,1) with values in L and logarithmic poles along E such that

$$\overline{\partial}\alpha + D'\beta = \frac{\lambda_k}{s_E} \qquad \text{on } X \setminus E.$$

- Assume that $E = E_1$ and F = 0; we argue as follows
 - \$\left(Ω_i, (z_i)\right)_{i∈I}\$ finite covering of X, such that E₁ ∩ Ω_i = (z¹_i = 0).
 \$V_1 := ∑_{i∈I} θ_iz¹_i ∂/∂z¹_i\$; consider α₁ := α + 1/ND' (V₁ | α) (here D' is the Chern connection on E + L and N is the pole order of α along E₁.
 The pole order of α₁ is smaller than N 1.

- Change the notations (\widehat{X} replaced by X, etc).
- We have the following

Claim

There exist α and β forms of type (n,0) and (n-1,1) with values in L and logarithmic poles along E such that

$$\overline{\partial}\alpha + D'\beta = \frac{\lambda_k}{s_E} \qquad \text{on } X \setminus E.$$

- Assume that $E = E_1$ and F = 0; we argue as follows
 - (Ω_i, (z_i))_{i∈I} finite covering of X, such that E₁ ∩ Ω_i = (z_i¹ = 0).
 V₁ := ∑_{i∈I} θ_iz_i¹ ∂/∂z_i¹; consider α₁ := α + 1/N D' (V₁]α) (here D' is the Chern connection on E + L and N is the pole order of α along E₁.
 The pole order of α₁ is smaller than N 1.
 We do similar manipulations with β: the relevant facts are [∂/D'] = 0 on
 - We do similar manipulations with β ; the relevant facts are $[\overline{\partial}, D'] = 0$ on $X \setminus (E \cup F)$ and $D' \circ D' = 0$.

• It would be enough to prove.

• It would be enough to prove.

Theorem 2

Let λ be a smooth $\overline{\partial}$ -closed (n, 1)-form on X with values in E + L such that.

• $E = E_1 + \dots + E_N$, (L, h_L) such that $\varphi_L = \sum \delta_i \log |f_i|^2$, E + F snc

• It would be enough to prove.

Theorem 2

Let λ be a smooth $\overline{\partial}$ -closed (n, 1)-form on X with values in E + L such that.

- $E = E_1 + \dots + E_N$, (L, h_L) such that $\varphi_L = \sum \delta_i \log |f_i|^2$, E + F snc
- The equality $\frac{\lambda}{s_E} = \overline{\partial}\alpha + D'\beta$ holds on $X \setminus E$, where α and β have logarithmic poles along E.

• It would be enough to prove.

Theorem 2

Let λ be a smooth $\overline{\partial}$ -closed (n, 1)-form on X with values in E + L such that.

- $E = E_1 + \dots + E_N$, (L, h_L) such that $\varphi_L = \sum \delta_i \log |f_i|^2$, E + F snc
- The equality $\frac{\lambda}{s_E} = \overline{\partial}\alpha + D'\beta$ holds on $X \setminus E$, where α and β have logarithmic poles along E.

Then λ is $\overline{\partial}$ -exact.

• Main tool: Hodge decomposition, version that we next discuss.

Hodge decomposition

• Consider a compact Kähler manifold X and a snc divisor $Y = Y_1 + \ldots Y_k$.

Hodge decomposition

- Consider a compact Kähler manifold X and a snc divisor $Y = Y_1 + \ldots Y_k$.
- Let $\omega_{\mathcal{P}}$ be a metric with Poincaré-type singularities along Y

$$\omega_{\mathcal{P}}|_{\Omega} = \sum_{i=1}^{r} \frac{\sqrt{-1}dz_i \wedge d\overline{z}_i}{|z_i|^2 \log^2 |z_i|^2} + \sum_{i=r+1}^{n} \sqrt{-1}dz_i \wedge d\overline{z}_i.$$

Hodge decomposition

- Consider a compact Kähler manifold X and a snc divisor $Y = Y_1 + \ldots Y_k$.
- Let $\omega_{\mathcal{P}}$ be a metric with Poincaré-type singularities along Y

$$\omega_{\mathcal{P}}|_{\Omega} = \sum_{i=1}^{r} \frac{\sqrt{-1}dz_i \wedge d\overline{z}_i}{|z_i|^2 \log^2 |z_i|^2} + \sum_{i=r+1}^{n} \sqrt{-1}dz_i \wedge d\overline{z}_i.$$

• (L, h_L) such that $\varphi_L = \sum_{i=1}^r \delta_i \log |z_i|^2$ on Ω .

Hodge decomposition

- Consider a compact Kähler manifold X and a snc divisor $Y = Y_1 + \ldots Y_k$.
- Let $\omega_{\mathcal{P}}$ be a metric with Poincaré-type singularities along Y

$$\omega_{\mathcal{P}}|_{\Omega} = \sum_{i=1}^{r} \frac{\sqrt{-1}dz_i \wedge d\overline{z}_i}{|z_i|^2 \log^2 |z_i|^2} + \sum_{i=r+1}^{n} \sqrt{-1}dz_i \wedge d\overline{z}_i.$$

•
$$(L, h_L)$$
 such that $\varphi_L = \sum_{i=1}^r \delta_i \log |z_i|^2$ on Ω .

Theorem 3

We have the following decomposition for $(X, \omega_{\mathcal{P}})$ and (L, h_L) .

Hodge decomposition

- Consider a compact Kähler manifold X and a snc divisor $Y = Y_1 + \ldots Y_k$.
- Let $\omega_{\mathcal{P}}$ be a metric with Poincaré-type singularities along Y

$$\omega_{\mathcal{P}}|_{\Omega} = \sum_{i=1}^{r} \frac{\sqrt{-1}dz_i \wedge d\overline{z}_i}{|z_i|^2 \log^2 |z_i|^2} + \sum_{i=r+1}^{n} \sqrt{-1}dz_i \wedge d\overline{z}_i.$$

•
$$(L, h_L)$$
 such that $\varphi_L = \sum_{i=1}^r \delta_i \log |z_i|^2$ on Ω .

Theorem 3

We have the following decomposition for $(X, \omega_{\mathcal{P}})$ and (L, h_L) .

$$L_{n,1}^2(X_0,L) = \mathcal{H}_{n,1}(X_0,L) \oplus \operatorname{Im}\overline{\partial} \oplus \operatorname{Im}\overline{\partial}^*$$

where $X_0 := X \setminus Y$.

• Proof based on the following

• Proof based on the following

Theorem 4

Let $p \leq n$ be an integer. There exists a positive constant C > 0 such that

$$\int_{X_0} |u|^2_{\omega_{\mathcal{P}}} e^{-\varphi_L} dV \le C \int_{X_0} |\overline{\partial}u|^2_{\omega_{\mathcal{P}}} e^{-\varphi_L} dV_{\omega_{\mathcal{P}}}$$

for any *L*-valued form u of type (p, 0) which belongs to the domain of $\overline{\partial}$ and which is orthogonal to the space of L^2 harmonic (p, 0)-forms.

• Proof based on the following

Theorem 4

Let $p \leq n$ be an integer. There exists a positive constant C > 0 such that

$$\int_{X_0} |u|^2_{\omega_{\mathcal{P}}} e^{-\varphi_L} dV \le C \int_{X_0} |\overline{\partial}u|^2_{\omega_{\mathcal{P}}} e^{-\varphi_L} dV_{\omega_{\mathcal{P}}}$$

for any *L*-valued form u of type (p, 0) which belongs to the domain of $\overline{\partial}$ and which is orthogonal to the space of L^2 harmonic (p, 0)-forms.

 \bullet Application: same results hold for metrics with conic singularities along Y

$$\omega_{\mathcal{C}}|_{\Omega} = \sum_{i=1}^{r} \frac{\sqrt{-1}dz_{i} \wedge d\overline{z}_{i}}{|z_{i}|^{2} \frac{m_{i}-1}{m_{i}}} + \sum_{i=r+1}^{n} \sqrt{-1}dz_{i} \wedge d\overline{z}_{i}.$$

Theorem 5

For well-chosen multiplicities m_i the following decomposition for $(X,\omega_{\mathcal{C}})$ and (L,h_L) holds

Theorem 5

For well-chosen multiplicities m_i the following decomposition for $(X,\omega_{\mathcal{C}})$ and (L,h_L) holds

$$L^2_{n,1}(X_0,L) = \mathcal{H}_{n,1}(X_0,L) \oplus \operatorname{Im}\overline{\partial} \oplus \operatorname{Im}\overline{\partial}^{\star}$$

where $X_0 := X \setminus Y$.

Hodge decomposition

Theorem 5

For well-chosen multiplicities m_i the following decomposition for $(X,\omega_{\mathcal{C}})$ and (L,h_L) holds

$$L^2_{n,1}(X_0,L) = \mathcal{H}_{n,1}(X_0,L) \oplus \operatorname{Im}\overline{\partial} \oplus \operatorname{Im}\overline{\partial}^{\star}$$

where $X_0 := X \setminus Y$.

• Consider the complete metric $\omega_{\mathcal{C},\epsilon} = \omega_{\mathcal{C}} + \epsilon \omega_{\mathcal{P}}$

Hodge decomposition

Theorem 5

For well-chosen multiplicities m_i the following decomposition for $(X,\omega_{\mathcal{C}})$ and (L,h_L) holds

$$L^2_{n,1}(X_0,L) = \mathcal{H}_{n,1}(X_0,L) \oplus \operatorname{Im}\overline{\partial} \oplus \operatorname{Im}\overline{\partial}^{\star}$$

where $X_0 := X \setminus Y$.

- Consider the complete metric $\omega_{\mathcal{C},\epsilon} = \omega_{\mathcal{C}} + \epsilon \omega_{\mathcal{P}}$
- ▶ Use Theorem 4 and $\epsilon \to 0$

Hodge decomposition

Theorem 5

For well-chosen multiplicities m_i the following decomposition for (X, ω_c) and (L, h_L) holds

$$L^2_{n,1}(X_0,L) = \mathcal{H}_{n,1}(X_0,L) \oplus \operatorname{Im}\overline{\partial} \oplus \operatorname{Im}\overline{\partial}^{\star}$$

where $X_0 := X \setminus Y$.

- Consider the complete metric $\omega_{\mathcal{C},\epsilon} = \omega_{\mathcal{C}} + \epsilon \omega_{\mathcal{P}}$
- Use Theorem 4 and $\epsilon \to 0$
- Main point is that the space of L^2 holomorphic p forms is *independent* of ϵ .

• Back to the equation $\frac{\lambda}{s_E} = \overline{\partial} \alpha + D' \beta$. If E = 0, we argue as follows.

PROOF OF THE MAIN RESULT

The klt case

• Back to the equation $\frac{\lambda}{s_E} = \overline{\partial} \alpha + D' \beta$. If E = 0, we argue as follows.

• Consider $(X, \omega_{\mathcal{P}})$ Poincaré metric corresponding to F.

- Back to the equation $\frac{\lambda}{s_E} = \overline{\partial} \alpha + D' \beta$. If E = 0, we argue as follows.
 - Consider $(X, \omega_{\mathcal{P}})$ Poincaré metric corresponding to F.
 - Enough to show that $\int_X \langle \lambda, \xi \rangle e^{-\varphi_L} dV_{\omega_P} = 0$ for any harmonic (n, 1)-form ξ .

- Back to the equation $\frac{\lambda}{s_E} = \overline{\partial}\alpha + D'\beta$. If E = 0, we argue as follows.
 - Consider $(X, \omega_{\mathcal{P}})$ Poincaré metric corresponding to F.
 - Enough to show that $\int_X \langle \lambda, \xi \rangle e^{-\varphi_L} dV_{\omega_P} = 0$ for any harmonic (n, 1)-form ξ .
 - ▶ This is clear, given that

$$\int_{X} \langle \overline{\partial} \alpha, \xi \rangle e^{-\varphi_{L}} dV_{\omega_{\mathcal{P}}} = 0, \qquad \int_{X} \langle D'\beta, \xi \rangle e^{-\varphi_{L}} dV_{\omega_{\mathcal{P}}} = 0$$

- Back to the equation $\frac{\lambda}{s_E} = \overline{\partial} \alpha + D' \beta$. If E = 0, we argue as follows.
 - Consider $(X, \omega_{\mathcal{P}})$ Poincaré metric corresponding to F.
 - Enough to show that $\int_X \langle \lambda, \xi \rangle e^{-\varphi_L} dV_{\omega_P} = 0$ for any harmonic (n, 1)-form ξ .
 - ▶ This is clear, given that

$$\int_X \langle \overline{\partial} \alpha, \xi \rangle e^{-\varphi_L} dV_{\omega_{\mathcal{P}}} = 0, \qquad \int_X \langle D'\beta, \xi \rangle e^{-\varphi_L} dV_{\omega_{\mathcal{P}}} = 0$$

• We use the fact that $\gamma_{\xi} := \star \xi$ is holomorphic.

In the general case Theorem 2 proved along the following steps.

In the general case Theorem 2 proved along the following steps.

▶ By using induction it is enough to treat the case $\frac{\lambda}{s_E}$ is smooth.

In the general case Theorem 2 proved along the following steps.

- ▶ By using induction it is enough to treat the case $\frac{\lambda}{s_E}$ is smooth.
- We consider $(X, \omega_{\mathcal{C}})$ metric with conic singularities along F and let ξ be a L^2 harmonic L-valued (n, 1)-form.

In the general case Theorem 2 proved along the following steps.

- ▶ By using induction it is enough to treat the case $\frac{\lambda}{s_E}$ is smooth.
- We consider $(X, \omega_{\mathcal{C}})$ metric with conic singularities along F and let ξ be a L^2 harmonic L-valued (n, 1)-form.
- ▶ Let $(\theta_{\epsilon})_{\epsilon>0}$ truncation functions corresponding to E + F; we have

$$\int_X \frac{\lambda}{s_E} \wedge \overline{\gamma}_\xi e^{-\varphi_L} = \lim_{\epsilon \to 0} \int_X \theta_\epsilon \frac{\lambda}{s_E} \wedge \overline{\gamma}_\xi e^{-\varphi_L}$$

In the general case Theorem 2 proved along the following steps.

- ▶ By using induction it is enough to treat the case $\frac{\lambda}{s_E}$ is smooth.
- We consider (X, ω_c) metric with conic singularities along F and let ξ be a L^2 harmonic *L*-valued (n, 1)-form.
- ▶ Let $(\theta_{\epsilon})_{\epsilon>0}$ truncation functions corresponding to E + F; we have

$$\int_X \frac{\lambda}{s_E} \wedge \overline{\gamma}_\xi e^{-\varphi_L} = \lim_{\epsilon \to 0} \int_X \theta_\epsilon \frac{\lambda}{s_E} \wedge \overline{\gamma}_\xi e^{-\varphi_L}$$

• We have $\lim_{\epsilon \to 0} \int_X \theta_{\epsilon} D' \beta \wedge \overline{\gamma}_{\xi} e^{-\varphi_L} = 0$ (even if now β has logarithmic poles).

▶ The other term is more troublesome:

$$\lim_{\epsilon \to 0} \int_X \theta_\epsilon \overline{\partial} \alpha \wedge \overline{\gamma}_\xi e^{-\varphi_L} = \sum_i \int_{E_i} \alpha_i \wedge \overline{\gamma}_\xi e^{-\varphi_L}$$

▶ The other term is more troublesome:

$$\lim_{\epsilon \to 0} \int_X \theta_{\epsilon} \overline{\partial} \alpha \wedge \overline{\gamma}_{\xi} e^{-\varphi_L} = \sum_i \int_{E_i} \alpha_i \wedge \overline{\gamma}_{\xi} e^{-\varphi_L}$$

• α_i is a (n-1,0) form on E_i with logarithmic poles on $E - E_i|_{E_i}$. By interpreting it as current on E_i we get

$$\alpha_i = \tau_i + \Delta''(\mathcal{G}_i)$$

where τ_i is harmonic (= holomorphic) on E_i . This is due to de Rham-Kodaira in the absence of L, still holds in our setting.

▶ The other term is more troublesome:

$$\lim_{\epsilon \to 0} \int_X \theta_{\epsilon} \overline{\partial} \alpha \wedge \overline{\gamma}_{\xi} e^{-\varphi_L} = \sum_i \int_{E_i} \alpha_i \wedge \overline{\gamma}_{\xi} e^{-\varphi_L}$$

▶ α_i is a (n-1, 0) form on E_i with logarithmic poles on $E - E_i|_{E_i}$. By interpreting it as current on E_i we get

$$\alpha_i = \tau_i + \Delta''(\mathcal{G}_i)$$

where τ_i is harmonic (= holomorphic) on E_i . This is due to de Rham-Kodaira in the absence of L, still holds in our setting.

• $\Delta''(\mathcal{G}_i)$ is orthogonal on harmonic forms, so

$$\int_{E_i} \alpha_i \wedge \overline{\gamma}_{\xi} e^{-\varphi_L} = \int_{E_i} \tau_i \wedge \overline{\gamma}_{\xi} e^{-\varphi_L}$$

• In conclusion, the current

$$\phi \to \int_X \frac{\lambda}{s_E} \wedge \overline{\phi} e^{-\varphi_L} + \sum_i \int_{E_i} \tau_i \wedge \overline{\phi} e^{-\varphi_L}$$

has the following properties:

• In conclusion, the current

$$\phi \to \int_X \frac{\lambda}{s_E} \wedge \overline{\phi} e^{-\varphi_L} + \sum_i \int_{E_i} \tau_i \wedge \overline{\phi} e^{-\varphi_L}$$

has the following properties:

▶ It is closed.

• In conclusion, the current

$$\phi \to \int_X \frac{\lambda}{s_E} \wedge \overline{\phi} e^{-\varphi_L} + \sum_i \int_{E_i} \tau_i \wedge \overline{\phi} e^{-\varphi_L}$$

has the following properties:

▶ It is closed.

▶ It is perpendicular to the space of harmonic forms

• In conclusion, the current

$$\phi \to \int_X \frac{\lambda}{s_E} \wedge \overline{\phi} e^{-\varphi_L} + \sum_i \int_{E_i} \tau_i \wedge \overline{\phi} e^{-\varphi_L}$$

has the following properties:

▶ It is closed.

- ▶ It is perpendicular to the space of harmonic forms
- It follows that it is $\overline{\partial}$ -exact; multiplication s_E shows that λ is $\overline{\partial}$ -exact.