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Introduction

Notations

We will use the following notations:

• p : X → D proper, smooth family such that Xt = p−1(t) is Kähler.

• KX is the canonical bundle of X

• L → X is a holomorphic line bundle

• For each k ≥ 0 consider Fk := (KX + L)⊗OX/tk+1OX

• We have a projection map πk : Fk+1 → Fk

Question
Let s ∈ H0(X ,Fk). When does s belongs to the image of πk?
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Introduction

The main result

We have the following statement.

Theorem [CP]
Let s be a section of Fk, where L := (m− 1)KX and m ≥ 1.

I let L := L|X and ϕL := m− 1
m

log |fs|2 so that hL = e−ϕL .

I s admits a C∞ extension sk to X , such that ∂sk = tk+1Λk together with

(?)
∫
X

∣∣∣∣Λkdt
∣∣∣∣2 e−(1−ε)ϕLdV <∞, ∀ε > 0.

Then s = πk(ŝ).

• For a more general result –involving an abstract L– we refer to arXiv:2012.05063.
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A few results and a conjecture

Two previously known resuts

• We recall the following.

Theorem ([OT87], ...)
Consider p : X → ∆ a Kähler family, (L, hL) on X and u ∈ H0(X,KX +L) such that

Θ(L, hL) ≥ 0,
∫
X

|u|2e−ϕL <∞.

Then u extends to X (together with L2 estimates for the extension).

Theorem ([CDM16])
Consider p : X → ∆ a Kähler family, (L, hL) on X and u ∈ H0(X ,Fk) such that:
I We have Θ(L, hL) ≥ 0 on X .

I u admits a C∞ extension uk to X such that ∂uk = tk+1Λk together with∫
X
|Λk|2 e−ϕLdV <∞

Then u extends to X (no estimates available).
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A few results and a conjecture

Motivation

The following important problem is open.

Conjecture [Siu]
Consider a Kähler family p : X → ∆ and let s ∈ H0(X,mKX) be a pluricanonical
section. Then s extends to X .

A few remarks:

I Solved by Y.-T. Siu (’02) for projective families.

I For Kähler families, only very particular cases known M. Levine (’83).

• We discuss next the proof of Theorem [CP].
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Proof of the main result

Step I

• We have ∂sk = tk+1Λk; let λk := Λk
dt

∣∣∣
X

I It follows that ∂λk = 0

I Have to show that
λk = ∂vk

for some L = (m− 1)KX -valued form vk.

• The first step is to show the following.

Claim
There exist α and β forms of type (n, 0) and (n− 1, 1) with values in L respectively,
such that their coefficients are C

∞

sN
and

λk = ∂α+D′β

on X \ (s = 0).
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Proof of the main result

Proof of the Claim

• We use the equation ∂sk = tk+1Λk and take the derivative with respect to t.

• Intrinsic objects needed:

I The section sk induces an operator

D′ : C∞p,q(X ,L)→ C∞p+1,q(X ,L)

locally given by D′|Ω = ∂ − m− 1
m

∂fk
fk
∧ ·

I Ξ ∈ C∞(X , TX ) such that Ξ|Ω = ∂

∂t
+
∑
i

ai
∂

∂zi

I Let LieΞ := D′(Ξc·) so that we have

LieΞ : C∞n+1,q(X ,L)→ C∞n+1,q(X ,L)
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Proof of the main result

Proof of the Claim

• Apply LieΞ to the equation ∂sk = tk+1Λk:

I On the RHS we get (k + 1)tkΛk +O(tk+1).

I On the LHS we have ∂LieΞ(sk) +D′(∂Ξcsk) + curvature.

I Thus: ∂LieΞ(sk) +D′(∂Ξcsk) = k + 1
m

tkΛk +O(tk+1)

• For the next derivative we remark:

I ∂Ξcsk = dt ∧ ρ

I LieΞ
(
D′(dt ∧ ρ)

)
= D′(dt ∧ ρ1).

• Summing up, after k + 1 derivatives we get

∂α+D′β = λk

on X \ (s = 0).
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∂α+D′β = λk

on X \ (s = 0).
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Proof of the main result

A few more reductions

• The previous step: ∂α+D′β = λk on X \ (s = 0)

• By hypothesis:
∫
X

|λk|2
dV

|s|2(1−ε) m−1
m

<∞.

• Let π : X̂ → X log-resolution
(
X,Div(s)

)
:

I The support of π?Div(s) written as E + F where E = E1 + · · ·+ EN and
F = F1 + · · ·+ FM , snc

I The inverse image λk induces a (n, 1) form λ̂k with values in E + L where
L ≡

∑
δiFi for δi ∈]0, 1[∩Q.

I Let hL be the metric on L given by ϕL :=
∑

δi log |fi|2.

• We have ∂α̂+D′β̂ = λ̂k on X̂ \ (E ∪ F ), forms with values in E + L.
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Proof of the main result

A few more reductions

• Change the notations (X̂ replaced by X, etc).

• We have the following

Claim
There exist α and β forms of type (n, 0) and (n− 1, 1) with values in L and
logarithmic poles along E such that

∂α+D′β = λk
sE

on X \ E.

• Assume that E = E1 and F = 0; we argue as follows
I
(
Ωi, (zi)

)
i∈I

finite covering of X, such that E1 ∩ Ωi = (z1
i = 0).

I V1 :=
∑
i∈I

θiz
1
i
∂

∂z1
i

; consider α1 := α+ 1
N
D′ (V1cα) (here D′ is the Chern

connection on E + L and N is the pole order of α along E1.
I The pole order of α1 is smaller than N − 1.
I We do similar manipulations with β; the relevant facts are [∂,D′] = 0 on
X \ (E ∪ F ) and D′ ◦D′ = 0.
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Proof of the main result

Conclusion

• It would be enough to prove.

Theorem 2
Let λ be a smooth ∂-closed (n, 1)-form on X with values in E + L such that.
I E = E1 + · · ·+ EN , (L, hL) such that ϕL =

∑
δi log |fi|2, E + F snc

I The equality λ

sE
= ∂α+D′β holds on X \ E, where α and β have logarithmic

poles along E.

Then λ is ∂-exact.

• Main tool: Hodge decomposition, version that we next discuss.
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Proof of the main result

Hodge decomposition

• Consider a compact Kähler manifold X and a snc divisor Y = Y1 + . . . Yk.

• Let ωP be a metric with Poincaré-type singularities along Y

ωP |Ω =
r∑
i=1

√
−1dzi ∧ dzi
|zi|2 log2 |zi|2

+
n∑

i=r+1

√
−1dzi ∧ dzi.

• (L, hL) such that ϕL =
∑r

i=1 δi log |zi|2 on Ω.

Theorem 3
We have the following decomposition for (X,ωP) and (L, hL).

L2
n,1(X0, L) = Hn,1(X0, L)⊕ Im∂ ⊕ Im∂?

where X0 := X \ Y .
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Proof of the main result

Hodge decomposition

• Proof based on the following

Theorem 4
Let p ≤ n be an integer. There exists a positive constant C > 0 such that∫

X0

|u|2ωP e
−ϕLdV ≤ C

∫
X0

|∂u|2ωP e
−ϕLdVωP

for any L-valued form u of type (p, 0) which belongs to the domain of ∂ and which is
orthogonal to the space of L2 harmonic (p, 0)–forms.

• Application: same results hold for metrics with conic singularities along Y

ωC |Ω =
r∑
i=1

√
−1dzi ∧ dzi

|zi|
2 mi−1

mi

+
n∑

i=r+1

√
−1dzi ∧ dzi.
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Proof of the main result

Hodge decomposition

Theorem 5
For well-chosen multiplicities mi the following decomposition for (X,ωC) and
(L, hL) holds

L2
n,1(X0, L) = Hn,1(X0, L)⊕ Im∂ ⊕ Im∂?

where X0 := X \ Y .

I Consider the complete metric ωC,ε = ωC + εωP

I Use Theorem 4 and ε→ 0

I Main point is that the space of L2 holomorphic p forms is independent of ε.
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Proof of the main result

The klt case

• Back to the equation λ

sE
= ∂α+D′β. If E = 0, we argue as follows.

I Consider (X,ωP) Poincaré metric corresponding to F .

I Enough to show that
∫
X
〈λ, ξ〉e−ϕLdVωP = 0 for any harmonic (n, 1)-form ξ.

I This is clear, given that∫
X

〈∂α, ξ〉e−ϕLdVωP = 0,
∫
X

〈D′β, ξ〉e−ϕLdVωP = 0

I We use the fact that γξ := ?ξ is holomorphic.
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Proof of the main result

End of the proof

In the general case Theorem 2 proved along the following steps.

I By using induction it is enough to treat the case λ

sE
is smooth.

I We consider (X,ωC) metric with conic singularities along F and let ξ be a L2

harmonic L-valued (n, 1)-form.

I Let (θε)ε>0 truncation functions corresponding to E + F ; we have∫
X

λ

sE
∧ γξe

−ϕL = lim
ε→0

∫
X

θε
λ

sE
∧ γξe

−ϕL

I We have lim
ε→0

∫
X

θεD
′β ∧ γξe

−ϕL = 0 (even if now β has logarithmic poles).
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Proof of the main result

End of the proof

I The other term is more troublesome:

lim
ε→0

∫
X

θε∂α ∧ γξe
−ϕL =

∑
i

∫
Ei

αi ∧ γξe
−ϕL

I αi is a (n− 1, 0) form on Ei with logarithmic poles on E − Ei|Ei . By
interpreting it as current on Ei we get

αi = τi + ∆′′(Gi)

where τi is harmonic (= holomorphic) on Ei. This is due to de Rham-Kodaira
in the absence of L, still holds in our setting.

I ∆′′(Gi) is orthogonal on harmonic forms, so∫
Ei

αi ∧ γξe
−ϕL =

∫
Ei

τi ∧ γξe
−ϕL
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Proof of the main result

End of the proof

• In conclusion, the current

φ→
∫
X

λ

sE
∧ φe−ϕL +

∑
i

∫
Ei

τi ∧ φe−ϕL

has the following properties:

I It is closed.

I It is perpendicular to the space of harmonic forms

• It follows that it is ∂-exact; multiplication sE shows that λ is ∂-exact.
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