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INTRODUCTION

Notations

We will use the following notations:

e p: X — D proper, smooth family such that X; = p~!(t) is Kéhler.
o Ky is the canonical bundle of X

e L — X is a holomorphic line bundle

e For each k > 0 consider Fi, := (Kx + £) ® (’)X/tkﬂ(’)x

e We have a projection map 7x : Fry+1 — Fk

Let s € H°(X, Fi,). When does s belongs to the image of m;,?
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INTRODUCTION
The main result

We have the following statement.

Theorem [CP]

Let s be a section of Fj, where £ := (m — 1)Kx and m > 1.

—1
» let L := L|x and ¢, := mm log | fs|? so that hy, = e~ %L,

» s admits a C™ extension si to X, such that Os, = tPHIAL together with

() /X

Then s = 7x(3).

2

A
Bl e (1799141 < oo, Ve > 0.

dt

e For a more general result —involving an abstract £L— we refer to arXiv:2012.05063.
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Two previously known resuts

e We recall the following.

Theorem ([OT87], ...)

Consider p : X — A a Kahler family, (£, hz) on X and u € H°(X, Kx + L) such that
O(L, he) >0, / lul?e™ L < oo.
p's
Then u extends to X (together with L? estimates for the extension).

Theorem ([CDM16])

Consider p : X — A a Kahler family, (£,hz) on X and u € H°(X, F) such that:
» We have ©(L,hs) > 0 on X.
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A FEW RESULTS AND A CONJECTURE

Two previously known resuts

e We recall the following.

Theorem ([OT87], ...)
Consider p : X — A a Kahler family, (£, hz) on X and u € H°(X, Kx + L) such that

O(L, he) / lul?e” % < .
Then u extends to X (together with L? estimates for the extension).

Theorem ([CDM16])

Consider p : X — A a Kahler family, (£,hz) on X and u € H°(X, F) such that:
» We have ©(L,hs) > 0 on X.

» u admits a C* extension ux to X such that duy = tkHA;C together with

/ |Ax|> e ?LdV < oo
x

Then u extends to X (no estimates available).
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A FEW RESULTS AND A CONJECTURE

Motivation

The following important problem is open.

Conjecture [Siu]

Consider a Kihler family p: X — A and let s € H°(X, mKx) be a pluricanonical
section. Then s extends to X.

A few remarks:
» Solved by Y.-T. Siu (’02) for projective families.

» For Kahler families, only very particular cases known M. Levine (’83).

e We discuss next the proof of Theorem [CP].
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PROOF OF THE MAIN RESULT

e We have 9s;, = tkHAk; let \p := &
dt | x
> Tt follows that O\x = 0
» Have to show that B
>\k = 8vk

for some L = (m — 1) K x-valued form vy.

e The first step is to show the following.

There exist a and 8 forms of type (n,0) and (n — 1,1) with values in L respectively,
such that their coefficients are e and

A = Ha + D/ﬁ
on X \ (s =0).
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Proof of the Claim

e We use the equation ds, = t"7' A, and take the derivative with respect to ¢.

Page 8 of 19



PROOF OF THE MAIN RESULT

Proof of the Claim

e We use the equation ds, = t"7' A, and take the derivative with respect to ¢.

e Intrinsic objects needed:

Page 8 of 19



PROOF OF THE MAIN RESULT

Proof of the Claim

e We use the equation ds, = t"7' A, and take the derivative with respect to ¢.

e Intrinsic objects needed:

» The section s induces an operator
D" CZ?Q(X’ ‘C’) - ng-l,tI(X7 £)

-1
locally given by D’|q = 0 — m—10fk A
m fk

Page 8 of 19



PROOF OF THE MAIN RESULT

Proof of the Claim

e We use the equation ds, = t"7' A, and take the derivative with respect to ¢.

e Intrinsic objects needed:
» The section s induces an operator
D" CZ?Q(X’ ‘C’) - ng-l,tI(X7 £)

-1
locally given by D’|q = 0 — m—10fk A
m fk

> = e C(X,Tx) such that Z|g = % +Zai%

Page 8 of 19



PROOF OF THE MAIN RESULT

Proof of the Claim

e We use the equation ds, = t"7' A, and take the derivative with respect to ¢.

e Intrinsic objects needed:
» The section s induces an operator
D" CZ?Q(X’ ‘C’) - ng-l,tI(X7 £)

-1
locally given by D’|q = 0 — m—10fk A
m fk

> = e C(X,Tx) such that Z|g = % +Zai%

» Let Liez := D'(Z]-) so that we have

LieE : Cflj_l,q(X, E) — le’q(x, L:)
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PROOF OF THE MAIN RESULT

Proof of the Claim

e Apply Liez to the equation dsi = P

» On the RHS we get (k4 1)t"A, + O@* ).
» On the LHS we have gLieg(Sk) + D/(EEJ sk) + curvature.

> Thus: Lies(si) + D' (FZ)sx) = *ELek A, + 0(* )

m
e For the next derivative we remark:
> 5Ej s =dtN\p
> Liez (D'(dt A p)) = D'(dt A pr).
e Summing up, after k + 1 derivatives we get
da+D'B =X

on X \ (s =0).
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A few more reductions

e The previous step: 0o+ D' = Ay on X \ (s = 0)

dv

e By hypothesis: / M| ———— <
x |5|2<175)T

eletm:X = X log-resolution (X, Div(s)):

» The support of 7*Div(s) written as E + F where E = E; + --- + En and
F=F +---+4+ Fy, snc

» The inverse image A\, induces a (n, 1) form A with values in E + L where
L= Zéze for ¢; E]O, 1[“@.
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e By hypothesis: / |/\k|2d7‘/ < o0
x |
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PROOF OF THE MAIN RESULT

A few more reductions

e The previous step: 0o+ D' = Ay on X \ (s = 0)

e By hypothesis: / |/\k|2d7‘/ < o0
x |

s|2(1—s)%
eletm:X = X log-resolution (X, Div(s)):

» The support of 7*Div(s) written as E + F where E = E; + --- + En and
F=F +---+4+ Fy, snc

» The inverse image A\, induces a (n, 1) form A with values in E + L where
L= Zéze for ¢; E]O, 1[“@.

» Let hr be the metric on L given by ¢r, := Zéi log |fz\2

e We have da + D'B = A, on X \ (EUF), forms with values in E + L.
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A few more reductions

e Change the notations (X replaced by X, etc).
e We have the following

There exist « and (3 forms of type (n,0) and (n — 1,1) with values in L and
logarithmic poles along E such that

goz—i—D/ﬁ:ﬁ on X \ E.
SE

e Assume that £ = FE; and F = 0; we argue as follows
> (Qi, (zi))iel finite covering of X, such that E; N Q; = (2} = 0).

1
> V= EI 9%}%; consider ay := a + ND/ (Vi ]a) (here D’ is the Chern
ic
connection on E + L and N is the pole order of a along E;.

» The pole order of a; is smaller than N — 1.

> We do similar manipulations with 3; the relevant facts are [9, D'] =0 on
X\(EUF)and D'oD’ =0.
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PROOF OF THE MAIN RESULT

Conclusion

e It would be enough to prove.

Let A be a smooth d-closed (n, 1)-form on X with values in E 4 L such that.
» E=FE1+ -+ En, (L, h) such that ¢ = > &;log|fi|*, E+ F snc

» The equality si = da + D' holds on X \ E, where « and 8 have logarithmic
E
poles along E.

Then ) is d-exact.

e Main tool: Hodge decomposition, version that we next discuss.
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Hodge decomposition

e Consider a compact Kahler manifold X and a snc divisor Y = Y7 +...Y%.
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Hodge decomposition

e Consider a compact Kahler manifold X and a snc divisor Y = Y7 +...Y%.
e Let wp be a metric with Poincaré-type singularities along Y

r

UJ’P|Q — Z 7"_16121/\@ + Z V—=1dz; N dz;.

12 20,2
i=1 |2i? log™ [ =i i=r1

e (L,hy) such that ¢ =Y &;log|z|* on €.

We have the following decomposition for (X,wp) and (L, hr).
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Hodge decomposition

e Consider a compact Kahler manifold X and a snc divisor Y = Y7 +...Y%.

e Let wp be a metric with Poincaré-type singularities along Y

" vV —1dz; N\ dz; "
w = _ 4 —1dz; N dz;.
Pl =2 e 2

e (L,hy) such that ¢ =Y &;log|z|* on €.

We have the following decomposition for (X,wp) and (L, hr).

L2 (X0, L) = Hn,1(Xo, L) ® Imd & Tmd"

where X := X \Y.
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Hodge decomposition

e Proof based on the following

Let p < n be an integer. There exists a positive constant C' > 0 such that
2 = a2 _
/ [ulipe” PhdV < C/ |Ouls, e P dVi,p
Xo Xo

for any L-valued form u of type (p,0) which belongs to the domain of & and which is
orthogonal to the space of L? harmonic (p,0)-forms.

Page 14 of 19



PROOF OF THE MAIN RESULT

Hodge decomposition

e Proof based on the following

Let p < n be an integer. There exists a positive constant C' > 0 such that

/ |u|ZP67¢LdV§C/ |5u|2p67¢Lde7,
Xo Xo

for any L-valued form u of type (p,0) which belongs to the domain of & and which is
orthogonal to the space of L? harmonic (p,0)-forms.

e Application: same results hold for metrics with conic singularities along Y

wC|Q :ZrdZZAdZZ Z \/7dzz/\cr

my— 1

i=1 |Z7,| g i=r+1
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PROOF OF THE MAIN RESULT

Hodge decomposition

For well-chosen multiplicities m; the following decomposition for (X, wc) and
(L, hz) holds

Page 15 of 19



PROOF OF THE MAIN RESULT

Hodge decomposition

For well-chosen multiplicities m; the following decomposition for (X, wc) and
(L, hz) holds _ B
L2 1(Xo, L) = Hn,1(Xo, L) ® Imd @ Imd

where X := X \Y.

Page 15 of 19



PROOF OF THE MAIN RESULT

Hodge decomposition

For well-chosen multiplicities m; the following decomposition for (X, wc) and
(L, hz) holds _ B
L2 1(Xo, L) = Hn,1(Xo, L) ® Imd @ Imd

where X := X \Y.

» Consider the complete metric we,e = we + ewp

Page 15 of 19



PROOF OF THE MAIN RESULT

Hodge decomposition
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Hodge decomposition

For well-chosen multiplicities m; the following decomposition for (X, wc) and
(L, hz) holds _ B
L2 1(Xo, L) = Hn,1(Xo, L) ® Imd @ Imd

where X := X \Y.

» Consider the complete metric we,e = we + ewp
» Use Theorem 4 and € — 0

» Main point is that the space of L? holomorphic p forms is independent of e.
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The kit case

e Back to the equation ES =0a+ D'B. If E =0, we argue as follows.
SE

» Consider (X,wp) Poincaré metric corresponding to F.

» Enough to show that fx (A, & e ¥rdV,,, =0 for any harmonic (n, 1)-form &.

» This is clear, given that

/ (O, £)e L dV,,, =0, / (D'B,&)e™%LdV,, =0
X X

> We use the fact that ¢ := %€ is holomorphic.
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In the general case Theorem 2 proved along the following steps.

A
» By using induction it is enough to treat the case — is smooth.
SE

> We consider (X, we) metric with conic singularities along F and let & be a L?
harmonic L-valued (n, 1)-form.

» Let (0c)e>0 truncation functions corresponding to E + F'; we have

A
/*Mﬁ"’ “‘lﬁ%/fﬁ“se -
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End of the proof

In the general case Theorem 2 proved along the following steps.

A
» By using induction it is enough to treat the case — is smooth.
SE

> We consider (X, we) metric with conic singularities along F and let & be a L?
harmonic L-valued (n, 1)-form.

» Let (0c)e>0 truncation functions corresponding to E + F'; we have
—or A~ e
— /\ Te€ = lim Oe— N7,e
e—0 X SE

» We have lim | 6.D'B8 A Fee ¥ =0 (even if now 3 has logarithmic poles).
X

e—0
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End of the proof N

» The other term is more troublesome:

liir(l)/xéeﬁaA%ef“ = Z/E a; Nyge Pk
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End of the proof

» The other term is more troublesome:
lim/ 0.0 ANyee” L = Z/ a; Nyge Pk
e—0 X - E;

> «;isa (n—1,0) form on E; with logarithmic poles on E — E;|g,. By
interpreting it as current on E; we get

o =1+ A" (Gi)

where 7; is harmonic (= holomorphic) on E;. This is due to de Rham-Kodaira
in the absence of L, still holds in our setting.
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» The other term is more troublesome:
lim/ 0.0 ANyee” L = Z/ a; Nyge Pk
e—0 X - E;

> «;isa (n—1,0) form on E; with logarithmic poles on E — E;|g,. By
interpreting it as current on E; we get

o =1+ A" (Gi)

where 7; is harmonic (= holomorphic) on E;. This is due to de Rham-Kodaira
in the absence of L, still holds in our setting.

> A”(G;) is orthogonal on harmonic forms, so

/ a; Nge” PF :/ T Nyee 7k
B; E;

7 i
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e In conclusion, the current

¢>—>/ i/\56_“—&—23/ Ti A pe” L
x SE — JE,

has the following properties:
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End of the proof

e In conclusion, the current

¢>—>/ i/\56_“—&—23/ Ti A pe” L
x SE — JE,

has the following properties:
> It is closed.

» It is perpendicular to the space of harmonic forms

o It follows that it is 0-exact; multiplication s shows that X is O-exact.
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